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PART 1

BENDING OF THICK BEAMS OF BRIMODULUS MATERIALS
A.D. Tran
Exxon Production Research
Houston, Texas

and

C.W. Bert !
University of Oklahoma
Norman, Qklahoma

Abstract -¥+he literature on bending of beams made of bimodulus materials
(which have one value of the elastic modulus in tension and another in com-
prassion) is limited. A1l of the works known to the present investigators

are restricted to beams with natural boundary conditions and subjected to

specific distributions of normal pressure only. In the present work, the
transfer-matrix approach is used to determine the small-deflection static
behavior of bimodulus beams, including transverse shear deformation. The “
neytral surface, i.e., the locus of points having zero axial normal strain,
may vary linearly within each element. The effects of axial Joad and non-
natural boundary ccnditions are considered. As a basis for comparative evalua-
tion, exact closed-form solutions are also presented for special cases in which
3 the neutral-surface location is constant along the beam axis. Results are

compared between the two solution methods and are found to give good agreement.f

INTRODUCTION

As early as 1864, St. Venant [1] recognized that certain actual materials
have different elastic behavior when they are loaded in tension as compared

to compression. See also (2-4]. However, the concept of a bimodulus material,
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i.e., a bilinear material having different moduli in tension and in compression
was not originated until 1941 hy Timoshenko [3], who considered the flexural
stresses in such a material undergoing pure bending. The effective modulus

for stiffness of such a beam in pure bending was given by Marin {3]. The
bimodulus concept was rediscovered and extended to two-dimensional materials

by Ambartsumyan (6] in 1965. Subsequently, there have been many analyses of
two-dimensional bimodulus material, but this topic is beyond the scope of

the present work.

Work analogous to that of Timoshenko [3] or Marin [5] on static, small-
deflection bending of Bernoulli-Euler beams of homogeneous, bimodulus mate-
rial was presented in [7-15]. A so-called no-tension material, which has no
resistance to tension but a finite elastic resistance to compression, is a
special case of bimodulus material applicable to brittle materials, such as
many ceramic materials. Buckling of columns of no-tension material was ana-
lyzed in [16-18]. Column buckling of general bimodulus material was con-
sidered in {19,20]. Llarge static deflections of beams of bimodulus material
were treated in [21,22]. Transverse shear effects on bimodulus beams were
first treated by Kamiya [23). Bimodulus action in viscoelastic beams was
considered by Nachlinger and Leininger [24].

Special studies applicable to bending of specific kinds of nonhomogeneous-
material beams were carried out by some investigators. For example, Vierling
and Scheele [25] were concerned with cord-rubber, Bilida {26] and Phan-Thien
{271 with fiber composites, Carlsson et al. [28] with paperboard, Swift [29]
with reinforced concrete, and [30-33] with laminates.

The present work is believed to be the first, in the context of bimodulus

beams, in the following respects:
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Consideration of complicated and concentrated loadings, the

latter causing the neutral-surface location (and thus the beam

stiffnesses) to change along the length of the beam.

Application of the transfer-matrix method.

GOVERNING EQUATIONS FOR SMALL DEFLECTIONS OF A BIMODULUS
BEAM ACCOUNTING FOR TRANSVERSE SHEAR
Consider a beam of thickness h and length &. The origin of a Cartesian

coordinate system is located on the central axis with the z-axis being normal
The stress resultants and stress moment,

to the central axis (see Fig. 1)
are defined as:

each per unit width,
h/2 h/2
Q) = [ (oprdi 5 M= (1)
-h/2 -h/2

where Oy and T, 3re respectively the axial normal stress and the transverse
The theory developed by Yang, Norris, and Stavsky [34] assumes

shear stress.
the following displacement field:

U(x,2) = u(x) + zp(x) 5 W(x,z) = w(x) (2)
where U and W are the displacement components in the x and z directions,
respectively, u and w are the corresponding displacements at the midplane,
and ¢ is the bending slope,

The constitutive relation for a bimodulus beam with provision for a

shift of the neutral surface (due to different properties in tension and

compression) can be written as follows [35]:
\‘/‘ }
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Here, differentiation is denoted by a comma, i.e., ( ),x z d( )/dx. The
symbols A, B, D, S denote the respective extensional, flexural-extensional
coupling, flexural, and thickness shear stiffnesses defined by

h/2 h/2
(A,B,D) = J Q(k)(l,z,zz)dz ;S = K2 J G(k)dz (k = t,c) (4)
-h/2 -h/2

The quantity K2 is a shear correction coefficient which is generally taken

k) (k)

]

/(1- vlz(k)vZI(k)) for a wide, thin beam; G(

to be 5/6 for static loading of rectangular-section beams;Q(

(k)

1
is the longitudinal-transverse shear modulus; and k=t for tensile-strain

for a
k)

is E

compact-section beam or E

regions or k = c for compressive-strain regions.

One can write the equations of equilibrium as follows:

N, = 0 H Q,X = - Q(X) H M, - Q =0 (5)

Here, q(x) is the transverse distributed loading.
Substituting eqns (3) into egns (5), we obtain the following equations

of equilibrium in terms of generalized displacements

]
o

(AU’X + Bw’X)’X =
[S(w,x + w)

L = - a(x) (6)

(Buax + Dw,x),x - S(wax

The expression for neutral-surface location [36], z,, can be written as:
ex T Uiy ¥ Zp¥oy = 0
or

Zn = - u’X/w’X (7)




ANALYSIS: CLASSICAL APPROACH

For cases when the neutral-surface locations are constant along the
beam axis (x-direction), eqns (6) become

0

Au’xx * B“”xx
AW, o + 85, ) = -q(x) (8)

Bu’XX + Dw,xx - s(w’x + ¢) =0

Eans (8) constitute a sixth-order system of linear ordinary differential

equations with constant coefficients. The general solution can be written

as [3731:
38
u(x) = d; + dox + 7('CuX2 + u,
2
6(B% -
w(x) = -c, + _ig_giﬂgl c, - 2cx - 3¢ x> + A (9)
w(x) = ¢y + Cox + €3x2 + ¢y x3 + Wo

where ¢;, c», C3, C, are arbitrary constants and up, vp’ wp are particular

solutions. The arbitrary constants are determined by the boundary conditions

of the beam at x = 0 and x = Z.

The clamped boundary conditions at x = 0 and x = £ are given as

u(0) =u(2) =0 5 L(0) = (&) =0 5 w(Q) =w() =0 (10)

[}

The clamped boundary conditions at x = 0 and free boundary conditions

"

at x = £ are given as

u(0) = N(g) =0 5 »(0) =M} =0 ; w(0)=0(2) =0 (1)

The values of constants c;, C», C3, C4, dy, d, for the clamped-clamped and

clamped-free boundary conditions are as follows:
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For clamped-clamped conditions, the values are:

2
c, = Wp(o) H Cpr = § BSA- AD) Cy + ¢p(0)

- SA . 2
Cy = [g;zz-:-nggzijﬁﬁjﬂwp(o) + bp(ﬂ) - z[Wp(O) - Wp(ﬂ)]

(12)
2 2 . -
C3 = gglvg(8) = vy (0) -~ el 5 d; = -u,(0)
d, = %{up(O) - up(l) - %? ¢, 2]
For clamped-free conditions, the values are:
¢ = -wp(O) 3 dy = -up(O) 3 Cp = -wp,x(&) - 'p(z) - v _(0)
Cy = S ey - v (0)]
4~ §(BZ-AD) ‘-2 p
- 1 2 - \
d, = BT {-B Up,x(ﬂ) Bpr,X(Z) + SBﬁ[wp,x(Z) + pp(i)] (13)

+ ADup,x(Z) + Bpr,x(i)}

€7 ?TEz;TKBT'{'ABUp,x(Z) - ADuy (8) + ASEIW, L (8) + up (2]

2 1
+ ABuy () + B2y, (2]}

The particular solutions for uniform and sinusoidal normal load are as
follows:

For uniform normal load q(x) = Ay the particular solutions are

Bg q Aq
= o 3. < o 3
uplx) = grap=gey ©° 5 %) S X " 6(AD-82) e
Aq

= 0 _ x4
"o{x) = pogz X

For normal load q(x) = qosin ax, the particular solutions are
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7
qu
up(x) = ~=7AD - 05 oX
Aq°
wp(X) = - TI(RDCBZT COS ox (15)

q
o .1 A :
wp(x) 3z [§ + m{y] s ax

For normal load q(x) = 4oCOS aX, the particular solutions are

Bq )
up(x) = - TIAp g SN ox
Aq
‘Pp(x) = 33(AD-B sin ax (16)

ANALYSIS: TRANSFER-MATRIX APPROACH

A common type of system occurring in engineering practice consists of
a number of elements 1inked together end to end in the form of a chain.
Well-known examples are continuous beams, turbine-generator shafts, etc.
The transfer-matrix apprcach is ideally suited to such systems because only
successive matrix multiplications are necessary to fit the elements together,
In the transfer-matrix techniques [38,39], the beam is divided into NS
elements of mass m and each mass m is assumed to be concentrated at the mass
center of the element. The locations of these point masses are referreﬁ to
as stations. Consecutive stations are separated by massless fialds which
contain all of the stiffnesses of the system. Consequently, the model of
the beam shown in Fig. 2 consists of two half fields, 24/2, one at each end
of the beam, and NS staticns separated by Ns' 1 full fields of length, a¢,

where AL = Z/Ns and ¢ is the total length of the beam. The transfer matrix




transfers the displacements (u,w,y) and the forces (M,Q,N) from the left

side of the field or station to the right side of the same €ield or station.
Figure 3 shows the flexural configuration of the ith ;tation. From

continuity and static equilibrium considerations of Fig. 3, the following

conditions are derived:

=t R o= M
i i i i
R .. L R_ b .
W.i -w‘i Q'I - QT' q (]7)
R_ L R _ b
i =Y Ny = Ny
The above equations can be written in matrix notation as follows:
. 4R - - L
u 1 0 0 0 0 0 O (u}
W 0 1 0 0 0 0 W
] o 0 1 0 0 0o O Y
M = g 0 0 1 0 0 O M (18)
Q o 0 0 o 1 0 -qg Q
N g0 0 0 0 1 O N
\1)1' o 0 0 0 0 0 1|7 ji
Matrix eqn (18} can be written in more compact notation as
. R . L
[S]i = [Ts]i[S]i (19)

where the definitions of each term can be ascertained easily by direct
comparison between eqns (18) and (19). The matrix [TS] is known as the
station matrix.

th massless

Figure 4 illustrates the flexural configuration for the i
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beam element (field). Here, [S]? (station i) = [S]% (field i) and [S]?
(field i) = [S]%+] (station i+1). From equilibrium considerations the

following expressions are evident: '

L _ W . o . R._ AV S
Vi =N 5 Gy Q- Kg s My = My v Qe - Ky (20)
where* ‘
S S G (21) |
0 0 7
Eqns (3) can be inverted to become: }‘
b
u,x - -l 'D 8 N
w,x BZ - AD B -A M
(22)

i

Way (Q/s) - v

From egn (22), one can write the following equations by taking the averages

of the respective moments and axial forces at both ends of the field:

R L R
T ¥ [B(Mm U T
‘ L R R
Lo e Ala M) B(N5yp * N5)
Yigr TV T 2 7
where = 82 - AD.

Making use of eqns (20), ona can write equations (23) as:

Lo 202 gu) L (OMyR | (Bl

ufay = o+ (B 4 ¢ NG - Gk, (24)
Lo R (AagyR _L_LAZ _é Ast

wi"'] = 4’1' ( » 'i ]Q + ) ( 2y )Km

Similarly, eqns (22), (20), and (23), can be combined to yield the following:

Va]ues for Kq and K for several different loading conditions are listed in
Table 1.
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1+

L

i+1

10

.I-W1 + [_+J__l_]q + [_KA@.L]M

R _ (A(ag) oL
- (allvy - TNy * s K

~In matrix notation, egns (20),

Y
0 O - AZ 2 -
Y
O 0 ] =
Y

which can also be written as

The matrix [Tj] is known as the field matrix.

The station and field matrices,

(S5, = (7511815

8(a2 )2

2y

(25)
(24), and (25) become
B(a2)? -Dal -BaL T .,\R
== —= u
2y Y 2v m
% A(M.) -B(a2)® -AQae)? a2y (],
2v 4y m 2S5 °7q
-A( uf Bag Asg ,
2+ " 2y 'm
al 0 -Km M
1 0 -K
q Q
0 1 0 N
0 0 ] B \1 )
(26)
(27)

egns (19) and (27), can be used to give

the relationship of the state vectors at the two ends of the beam by system-

atically applying the matrices to each station and field as follows:

(g™
Ngl

Ng]

J

Pea.
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where AZ/2 is the length of each of the half fields at the ends of the beam
and a8 is the length of each of the whole fields. Eqn (28) can be written
in compact form as

(Slyyy = RIS], (29)

Given the boundary conditions, eqn (29) can be solved for the state vectors
at the ends, which are [S]o and [S]N+1; see Appendix C of [40].
S
Finally, the rest of the state vectors are calculated as follows:
[S]] = [Tj]AZ/Z[S]o

(S1} = (11T 30,0080,

SF; 7313, (T 1T 1, /5051,

R |
[S]NS = [TS]' o . [TS][TJ]AZ/Z[S]O

where the superscripts L and R refer to the Teft and right sides of the
station, respectively.

Values of beam stiffnesses A, B, D, S are needed in order to solve the
governing equations. However, for bimodulus beams, neutral-surface positions
are required for the computation of A, B, D, S. Study of the expression for
neutral-surface position in eqn (7) indicates :that, except for a few special
cases when neutral-surface positions are known constants, the governing
equations must be solved before we can compute neutral-surface positions.

Qur approach is first to assume a set of neutral-surface positions

a2 CA

"




12

along the beam length, then solve the governing equations for displacements

u, W, ¥, and the derivatives Usy and Yoy With known values of Usy and Yoy
compute neutral-surface pesitions using egn (7). If the assumed and computed
set of neutral-surface positions are in close agreement, the problem is
solved. Otherwise, assume a different set of neutral-surface positions and

repeat the calculations.
NUMERICAL RESULTS

Numerical results were obtained to verify the validity of application of
the transfer-matrix technique to bimodulus-beam problems and to study the
behavior of beams made of aramid-cord rubber (a bimodulus materijal). Unless

stated to the contrary, the material properties and beam dimensions listed

in Table 2 are employed in all of the problems considered, which are summarized .

in Table 3. VYalues of the constants used in Table 3 are as follows:

Mo =M = 0.1 Tb-in. 5 F, =1.01b Gg =9, = 0.1 1b/in. i’

The transfer-matrix model of the beam includes twenty-five elements, !
each of length 0.32 in. A value of 5/6 was used for the shear correction. i

coefficient, k2. A1l of the computations were carried out on an [BM 370

Model 158J computer.

Response of an aramid-cord rubber beam subjected to various loadings is
investigated in Cases 1 through 8. Bending moment M, shear force Q, axial
force N, and the corresponding displacements including axial elongation
(contraction) u, transverse deflection w, bending slope y, together with
neutral-surface positions z,, are computed. Results are presented in Tables

4 through 11 for Cases 1 through 8, respectively.
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The boundary conditions of Cases 1 through 4 are fairly simple. We
have been able to develop both closed-form and transfer-matrix solutions
for these cases. The good agreement between closed-form and transfer-matrix
results can be seen in Tables 5 through 8. For the majority of the results,
the error is less than 2%, although for a few result values which are close
to zero, the percentage error can go up to 5%. Actually, accuracy of the
transfer-matrix results can be improved by increasing the number of elements
into which the beam is divided. The number of elements used in this study
is twenty-five which is judged sufficient to give reasonably good results.
Support of the judgment is shown in Fig. 5.

Behavior of clamped-free bimodulus beams subjected to uniformly distri-
buted and sinusoidally distributed loads is investigated in Cases 1 and 2.
Behavior of bimodulus beams which are also subjected to uniformly distributed
and sinusoidally distributed Joads but with clamped-clamped boundaries is
investigated in Cases 3 and 4. The case of simply-supported boundaries and
sinusoidal load can also be solved in closed form for a beam. However, this
condition is not discussed here because it is a special one-dimensional case
of the plate problem investigated in [36]. For all four Cases 1 through 4,
the axial force N is zero. Neutral-surface positions z, are either constant
throughout or piecewise constant. Values of Z, for Cases 1, 2, and 3 are
-0.2672, 0.2672, and 0.2672 in., respectively. The value of z, for Case 4
is 0.2672 in. when 0<x< /2 and is -0.2672 in. when 2/2 < x < . Actually,
zero axial force always leads to constant or piecewise constant neutral-
surface position; this can be shown using eqn (B.3) from Appendix B and

setting N = 0 and M # O:

z, = B/A = constant (31)

i
I
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Constant or piecewise-constant neutral-surface position greatly reduces the
difficulty in development of closed-form solutions for eqns (6), because
egns (6) can then be reduced to a much simpler form, eqns (8).

If a practicing engineer does not have any access to the technique of
analyzing bimodulus structural elements as presented here, the simplest
thing he would do is to treat the bimodulus beam as an ordinary beam with
Young's modulus taken to be the arithmetic average of the tensile and com-
pressive Young's moduli of the bimodulus material. The question of how good
is this approach then arises; the answer is presented in Figs. 6 and 7. The
distribution of maximum tensile and maximum compressive normal stresses at
the outermost layer of the beam subjected to the condition of Cases 1 and 2
are presented for both approaches in Figs. 6 and 7. In a similar fashion,
deflections are compared in Fig. 8. As shown in Figs. & and 7, the average-
modulus approach results in a maximum normal stress which is approximately 10%
of the actual maximum stress (resulting from the bimodulus approach) for both
Cases 1 and 2. Figure 8 shows that a maximum deflection approximately 10% of
the actual deflection (based on the bimodulus approach) also results from the
average-modulus approcach. In short, design based on the average-modulus
approach would 1ikely lead to premature failure of the structural elements.
The technique developed in this work therefore would be valuable to design
engineers.

To compare the results of both the transfer-matrix analysis and finite-
element analysis with the closed-form solution, Figs. 9 and 10 are presented
for Case 3. The finite-element results were provided by Dr. J.N. Reddy [41]
and were obtained as a special case of a bimodulus plate (42]. There were

twenty-two elements along the length of the beam. Even for the exaggerated
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scale used in these figures, it was not possible to show a difference between
the transfer-matrix (TM) and closed-form (CF) solutions. The finite-element
values were generally smaller than the CF and TM values, except for bending
moment, for which all three methods agreed very closely. It was not possible
to compare the computation times involved, since the results were run on
different machines. However, in the past, it has been the general experience
that the TM technique is more efficient [43].

Since closed-form solutions are not available for the complicated
boundary conditions considered in Cases 5 through 8, only transfer-matrix
results are presented for these cases. The effect of concentrated moment,
axial force, and transverse force applied at the free boundary on static
behavior of a ¢lamped-free bimodulus beam are investigated for two distributions
of loading (uniform and sinusoidal) in Cases 5 and 6. The effect of concentra-
ted moments applied at both boundaries on static behavior of a bimodulus
beam subjected to the boundary condition of hinged-hinged with axial constraint
are investigated for uniformly distributed and sinusoidal loads in Cases 7 and
8. As shown in Tables 8 through 11, the axial forces N induced by the con-
centrated moment and forces at the boundaries are constant but not zero; and
neutral-surface positions z, vary drastically along the beam length. In fact
a look at egn (B.3) tells us that if axial force N is nonzero, one would expect
z, generally not to be constant. Although for beams made of ordinary (not
bimodulus) material, the neutral surface always coincides with the geometric
midplane, the neutral surface for a bimodulus beam is not only far different
from the midplane but also assumes various shapes depending on the conditions

of boundaries and loadings. Shapes of neutral surfaces for Cases 5 through 8

are illustrated in Fig. 11 through 14.

S —————
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CONCLUDING REMARKS

In this study, the transfer-matrix model of a bimodulus beam was
developed based on shear-deformable-beam theory. Transfer-matrix results
were compared with and were in close agreement with closed-form solutions
developed herein for all four combinations of uniformly distributed and
sinusoidally distributed load with clamped-clamped and clamped-free
boundary conditions.

Although closed-form solutions are available only for a number of
simple boundary conditions, the transfer-matrix model offers a solution
method for a wide variety of boundary and loading conditions. Utilizing
the model, behavior of a bimodulus beam was investigated by computing
and observing derlections and neutral-surface positions under fairly com-
plicated conditions of loading and boundary. It was found that concentrated
forces and moments applied at the boundaries have significant influence on
neutral-surface positions; more specifically they can cause the neutral-
surface positions (thus stiffnesses) to change drastically along the beam
length. As illustrations, plots of neutral-surface positions were presented
for some of the investigated cases. Numerical results of displacements and
stress distributions were also presented.

A distinguishing feature of the model developed in this work is numer-
ical efficiency. It requires much less computer storage than the variational
finite-element method. Also, in a comparison to an exact closed-form solu-

tion presented here, the transfer-matrix results were more accurate than the

variational finite-element results.

Y U
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APPENDIX A. EFFECT OF NEUTRAL-SURFACE LOCATION ON THE BEAM STIFFNESSES

It is mathematically convenient in the solution of egns (6) to reduce
these equations to an algebraic form not including the integral forms of the
A, B, D, and S. Therefore, the expansion of these terms into their form in
terms of the two Young's moduli Ek and two shear rigidities Gk is completed in
the following manner.

Refer to Fig. A.l for a typical stress distribution for the case of the
neutral-surface location greater than zero; where Z,» the neutral-surface
location, is measured positively downward from the geometric midplane. The
top of the beam is considered to be -h/2 and the bottom of the beam is h/2.

The beam stiffnesses are defined as follows:

h/2 K h/2 K

A = J E"dz , B = f E"zdz
h/2 h/2

D : j 2%z, s s J 64z
-h/2 -h/2

a it o B oz . B0

i




where Ek
Superscript k can be either t or c, which represent tension or compression
properties respectively.

Convex Downward Bending
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and Gk are the Young's moduli and shear moduli respectively.

In convex downward bending, the top Tayer of a beam is in compression

and the bottom layer in tension.

The

p -3
]

or

A

w
1

or

w
1}

Also

or

o
[}

and

wv
i

irst of eqns (A.1) can be expanded in the following form:

Zn h/2
J £%dz + J etdz = [z, + (h/2)1EC + [(h/2) - zn}Et

-h/2 Zn
(h/2)(EC + €F) + (€° - E)z, (A.2)

In similar form, the second of eqns (A.1) can be expanded to:

¥4 h/2 t )
"n c t = E‘_:. 2 - .ff. % E_.. _;_ 2 1
J E*z dz + EZdZ'Z(Zn 4)2(4 Zn)

-h/2 z,

|
2
- (h/8)(EC - £%) + (1/2)(E° - EN)z, (A.3)
2 h/2 , ; ) j
£€2%4z + { e%2%z = (1/3)(z] + %r)EC + (1/3)(%; - z;)Et

-h/2 2,
(h%/28) (€ + €%) + (1/3) (€€ - €%)z] (A.4)

z h/2

n c t c t

6%z + | Gz =z, + (/2165 ¥ ((M2) - 218
-h/2 "2,

e e -
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22 1
{
i
or :
1
s = (h/2)(6° + 6%) + (6° - %)z, (A.5)
Concave Downward Bending ‘4
In concave downward bending, the top layer of beam is in tension and
the bottom layer in compression. i*
The first of eqns (A.1) can be expanded in the following form: ‘1
z h/2 .
n t o t c :
A= J E*dz + J Edz = E [z, + (h/2)1 + E"[(h/2) - z, ] !
-h/2 2 £
or |
_ c t c t
A= (h/2){E” +E") - zn(E -E7) (A.6)
With a similar approach, the second of eqns (A.1) can be expanded to:
Zz h/2
n t 2 c .2
] t Coqp = £ (4,2 .00y LES h2 2
B—j EZdZ+J EZdZ-Z(Zn'4)+2(4'Zn)
-h/2 n
or
8 = (h%/8)(EC - €Y) - (1/2)(E° - £%)2 (A.7) i
Also b2
z
n t 3 C 3
] t 24 < B0 3. 0 L ES 0D o
0= | Ezdz+[z ez = 52+ I B G- )
-h/2 n
or
D = (h’/28) (e + €Y - (1/3)(E° - EY)z] (A.8)
and
z, h/2
5 = Gtdz + f 6%z = 6%(z, + ) + 65(F - z,)
-h/2 Zn
ar
s = (h/2)(c + 6% - (6° - 6%)z (A.9)

n
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APPENDIX 8. METHOD OF COMPUTING NEUTRAL-SURFACE LOCATION FROM MOMENT i
DIAGRAM AND AXIAL FORCE t

Under certain combinations of loading and boundary conditions, the
neutral-surface location varies drastically along the beam length (x-axis).
Closed-form salutions currently exist only for cases in which the neutral-
surface location is constant aiong the beam length. However, the transfer-
matrix technique can be utilized to analyze cases of varying neutral-surface
Tocation. Evidently some benchmark is needed to verify the latter technique's
application to bimodulus problems. It is a fairly simple task to derive the
moment diagram from boundary conditions and applied axial force. Results of this

method have then been checked against those of transfer-matrix analysis;

good agreement was obtained.
The constitutive relation for a bimodulus beam with provision for a shift
of neutral-surface location (due to different properties in tension and com-

pression) has been written in egn (22) as follaws:

0
T : -0 8 N (8.1)
Vay - BZ-AD B -A kM

From the kinematics of deformation, the neutral-surface location has

been derived and expressed in egn (7) as follows:

- _ o]
zn = u,x/\p’x (B-Z)

Replacing u?x and oy by the expressions in eqn (B.1), one can rewrite egn

(B.2) as

z, = (BM - DN)/(AM - BN) (8.3)
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Study of eqns (A.2) - (A.4) and (A.6) - (A.8) indicates that the

expressions for stiffnesses A, B, D can be written as

A=aj+az 5 B=b +bzl ; D=d +d,2] (8.4)
where for concave bending
= (2)(ES+EY) 5 o, =€ -Ef
L= -(h%/8)(EC - £Y) 5 b, = (1/2) (€ - EF) (8.5.a)
(h®/2a)(E + %) 5 d, = (1/3)(C - €)

(o8 o o
[} 1} |

and for convex bending

a, = (VS +EY) 5 2 = - (E°-EH
b, = (h/8)(E - €) 5 b, = - (1/2)(e° - £F) (8.5.b)
d, = (h/28)(ES + EY) 5 4, = - (/3)(° - €Y

Replacing stfffnesses A, B, D by the expression in eqns (B.4), one can write

egn (B.3) as

2 = 3 - - |
Mz (a,-b,) + 2z -b] [z (b, -d,) +b;z - d,IN (8.6) !
Once moment M and axial force N are known, egn (B.5) can be solved for z, k
!
h/2 E
3 :
h J' TC I} Fx :
Y
'::
£

Fig. 1 Cartesian coordinatz systam for beam.
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V] REGION IN COMPRESSION

[ REGION IN TENSION

Fig. 11. Neutral-surface shape of an aramid-cord
rubber beam (Case 5),

A PW

Fig. 12. Neutral-surface shape of an aramid-cord
rubber beam (Case 6),

Fig. 13. Neutral-surface shape of an aramid-cord
rubber beam (Case 7).
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777 REGION IN COMPRESSION
[C_] REGION IN TENSION {

Fig. 14. Neutral-surface shape of an aramid-cord
rubber beam (Case 8).

t
é;; =E€yx

Fig. Al Typical stress distribution for a bimodulus
beam with neutral-surface position greatar
than zero,
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Table 1. Values of Km and Kq for various loading conditions

Loading condition K K
(on the whole beam) m qQ
Uniform load
2
a(x) = qq q,(82)772 9,88
‘—h—x
Sine Toad
q_ £ q
= i DT o 2.4 £ .o nm
q(x) = g, Sin 7 x o (2L cos 7 %51 e pp {cos T %5
in AT L eip AT - nm
f% (sin 7 x;=sin 3 xj_])] cos 7 xj-l)
x!,,’ai
Cosine load
q. 2 qf
= am oL nm 0 (gip Om
q(x) q, €OS 7 X vl Sl (cos T % . (sin %
nmw ... nmw . nw
- €os o= x5 _q)-L sin X;.1] - sin = x; 1)
b x

Table 2. Pertinent elastic and physical properties [36] and geometric para-

meters for aramid-cord rubber beam

Properties and Units Tension Compression
Longitudinal Young's modulus, psi 5.193 x 108 1.740 x 103
Longitudinal-thickness shear modulus, psi 5.366 x 102 5.366 x 102
Density, 1bf/in3 0.037 0.037

Beam length 8 in.
Beam depth (thickness) 0.6 in.

. .

vy

e At i e e Szt .
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Table 3. Summary of all problem cases considered

Case | Boundary conditions Spatial distribution Time variation of
No. of distributed load distributed load
y q=qq
T
4 STATIC
] k
X=0 X=£
CLAMPED-FREE UNIFORMLY DISTRIBUTED
g=q. sinax
A 0
A
— y2 TN -
2 ’ NI 1LYV STATIC
- - X=0 X=2
CLAMPED-FREE SINUSOIDAL (e=27/1)
4 Y, q=qq
2 2 b bbdbad
Yoo 7
3 - _ STATIC
CLAMPED-CLAMPED | *7© Xx=2
WITH AXIAL CONSTRAINT UNIFORMLY DISTRIBUTED
y q=q0 sin ax
¢ T IN
, ey | co— L —)
4 L STATIC
CLAMPED-CLAMPED | x=o0 x=1
WITH AXIAL CONSTRAINT SINUSQIDAL (a=27/2)
Mi 9=q
4 0
] 1N
5 Fi STATIC
CLAMPED-FREE NITH
MOMENT AND FORCES | x=0 x=1

APPLIED AT THE FREE

_END

UNTFORMLY DISTRIBUTED

e e —

el 2 X ottt d s W,E
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Table 3. (continued)

Case |} Boundary conditions Spatial distribution Time variation of
No. of distributed load distributed load
. M) 9=4q, sinax
) 3 Ny |
| [ 3 A 1 -
T, T STATIC
6 | cLaMPED-FREE WITH
MOMENT AND FQORCES X=0 X=1
APPLIED AT THE FREE SINUSQIDAL (a=2n/2)
END
M M -
(; 0 é) 9 =9,
= A !
7 7 — STATIC
HINGED-HINGED WITH <=0 <=1
MOMENTS APPLIED AT . rom —en
BOTH ENDS AND AXIAL UNIFORMLY DISTRIBUTED
CONSTRAINT
(f? gz> !x g = Gosinux
'/ B —
77 P77 el Y;' .
FEr -p
3 | HINGED-HINGED WITH ' STATIC
MOMENTS APPLIED AT X=0 X=2

80TH ENDS AND AXIAL
CONSTRAINT

SINUSOIDAL (a=2x/i)

JUTTI- - PrOTN TS TS L
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4
PART II ‘

TRANSIENT RESPONSE QOF A THICK BEAM
OF BIMODULAR MATERIAL

C.W. Bert '
School of Aerospace, Mechanical and Nuclear Engineering
The University of Oklahoma
Norman, Oklahoma, U.S.A.

and j
A.D. Tran

Exxon Production Research
Houston, Texas, U.S.A.

SUMMARY
Certain materials have different elastic behavior when they are loaded in
tension as compared to compression. As an engineering approximation, they
are usually modeled as a bimodular material, i.e., a bilinear material

having different Young's moduli in tension and in compression. All of

the previous analyses of bimodular beams known to the present investigators
have been concerned with either static loading or harmonic vibration. Thus,

the present work is believed to be the first to consider transient response

of such beams. The transfer-matrix method is used to discretize spatially,

while the timewise discretization is accomplished by use of the Newmark

beta method.
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INTRODUCTION

There is an extensive body of literature on the static behavior of
bimodular beams, going back as far as Timoshenko in 1941.% These works
were recently discussed in connection with a transfer-matrix static analysis
of bimodular beams by the present investigators.2 Examples of material
having such behavior are cord-rubber, soft biological tissues, paperboard,
and reinforced concrete.

The only dynamic analyses of bimodular beams known to the present
investigators are the works of Khachatryan3 in 1967, Galoyan and Khachatryank
in 1978, and Tran> in 1981. All of these involved either free or sinuso-
idally forced vibrations.

The present work uses the transfer-matrix methoda, which was shown in

Ref. 2 to be both more accurate and computationally more efficient than the
finite-element methcd for a staticly loaded bimodular beam. The neutral-
surface position, which is the boundary between the tensile and compres-
sive regions of a cross section is permitted to vary in a piecewise linear
fashion along the beam length. The beam is modeled as a Timoshenko beam,

i.e.; both transverse shear deformation and rotatory inertia are considered.

Numerous approaches have been used to handle transient response prob-
lems; these have included various transform techniquesT, the so-called
direct-analysis methode, the modal method®, and various numerical-integration
schemes. Among the latter are the central-difference methodla, the Houbolt
methodll, the Newmark beta methodlz, the Wilson theta methodls, and stiffly

L

stable methods.'* For simplicity and efficiency, the present analysis uses

the Newmark method.
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GOVERNING EQUATIONS
A relatively thick rectangular-section beam of thickness h and length
| 2 is considered to be undergoing small-displacement motion. The x axis
! is located on the beam midplane and the z axis is directed downward normal
to x.
¢ The Timoshenko-beam-theory displacement field, as follows, is used:
U(x,z,t) = u(x,t) + zp(x,t)

(1)
w(x,t)

| W(x,z,t)
Here, U and W are the displacement components in the respective x and z
directions, u and w are the corresponding midplane displacements, t is time,
and ¢ is the bending slope.
The axial and transverse stress resultants N and Q and stress couple
M, each per unit width, are defined as
h/2 (h/z

M) = [ o stz s e o

/2 %2 29, dz (2)

where 9y and T, are respectively the axial normal stress and the trans-

2z
verse shear stress.

Due to the bimodular action (different properties in tension and
compression), bending-stretching coupling is induced in a straight beam
of bimodular material even when it undergoes small deflections. Thus,

the appropriate constitutive relation is reminiscent of that for a beam

unsymmetrically laminated of ordinary (not bimodular) materialsls;

N A B 3u/3x

M B D|!|ay/3x (3)

i Q = S{y + (aw/ax)]

P




49

The symbols A, 8, D, and S denote the respective stretching, bending- l:
stretching coupling, bending, and transverse shear stiffnesses, all per :
unit width, defined by

h/2

h/2 ,
(A,B,D) = [ K 1,z,2%dz 3 s=k2 J 6 dz (4)
h/2 -h/2

Here, G is the shear modulus in the xz plane; K? is the shear correction

k) ik) for a compact-section beam or Eik)/(l- vx§k)v

coefficient; Q( is E
for a wide beam; and k=t for tensile-strain regions and k=c for
compressive regions.

The equations of motion appropriate for the subject beam are

N p 2
3x 3t?
2
8-p Y- qxt) (5)
EL

-1 52y
x4 135¢ x

Here, q{x,t) is the transverse distributed loading and P,I denote the 4
respective transverse translatory and rotatory inertia coefficients per

unit length:

h/2
=07 0L 4z (6)

(p’I) = J
-h/2
where o is the material density.

Equations (3) and (5) can be combined to obtain the following

"displacement equations of motion":

3 (a3, gy -op 2y

IX (A3x*8 3x) Ptz

3 WL vy 2 p 22W

3% [s(ax +y)] =P 317 q(x,t) (7)
3 (g4 opdly g,y =g 22

3IX (8 % 0 9x) S(ax tu) =1 3te
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As demonstrated in Appendix A, in bimodular beams, the beam stiff-

nesses A, B, and D depend upon the neutral-surface position Z,> which is

defined by setting the axial normal strain equal to zero:

au Y]
2 = — =
S ax T O

(v}

Thus,
= . dusdy
5 ax/ax (8)

TRANSFER-MATRIX FORMULATIQN

As a result of the present investigators' recent success in obtaining
very accurate results for staticly loaded, highly bimodular beams by using
the transfer-matrix methodz, it was decided to use this spatial-discretization
approach here. Briefly, the beam is divided into a number (NS) of mass
elements, each of which is assumed to have all of its mass concentrated at
its mass center, the location of which is called a station. Consecutive
stations are separated by massless fields containing all of the stiffnesses
present in the system. Conseguently, the complete beam is discretized to
consist of two half fields (12/2), one at each end of the beam, and N,
stations separated by NS - 1 full fields of length 3:. The role of the
transfer matrix, which will be presented subsequently, is to transfer the
generalized displacements (u,w,$) and the generalized forces (N,Q,M) from
the left side of the field or station to the right side of the same field
or station. For completeness, the field matrix for the present problem is
given in Appendix B.

Following Chu and Pilkeyg, we use the Newmark acceleration and

velocity relations in the following form

2 2
a4 - Y+l . n N /3t b (- 1) 3 yn]
at< a(at)? a(at)< 3at 23 3t?
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3y 3y 3%y 52y
ntl _ Un _ n n+l \
3t T (1-2x)at =tz Mt~ (9}

Here, y denotes each of u, w, and y; 3 and A are coefficients; it
is the time increment and the subscript (n+1) denotes conditions at a
time (n+1)at with n=0, 1, 2, ... As recommended in Ref. 9, we choose
A=1/2 and 8 > 1/4.

Consideration of continuity at station i at time (n+1)at enables one

to write

L

; (y = u,w,v) (10)

R
(.yn+'| )1 = (.Vn_,_] )

After applying equations {9) to the time derivatives, one can write

equations (7) in finite-difference form for station i at time (n+})at as

L
2 L (“n+1)i (un)% 7 U
(Nn+1)i - (Nn+1)i v P a(at)? ~ [s(AtSz * 3t OSTT)i
i azun L
+ (§§ - 1)(—3E7)i]} :
|
L T
R L (wn+1)i (wn)g 7 aw L :
(Q.,1)" = (Q.q)" + P -yt o (D
n+1 ; n+1 ; 3(at)< glat)? ~ zat ‘3t i
1 a:wn L
+ (gg- T)C—ggz)il} - q(t) n
() (o) 3 L 7
R L ML A S DA SRS A |
(Mn+1)i - (Mn+1)1 *I S(Atii © tg(at)? MRS (at )i

1 azwn L
+ (§§ - 1)(-§Ez)i]}
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Equations (10) and (11) can be written in matrix notation as

(a0 [ 0 0 0 0 0 N WAL
Woel 0 1 0 0 0 0 0 W
Vel 0 0 1 0 0 0 0 Yo
WMW S o= | o 0 1/s(at)?® 1 0 0 -I, <Mn+17 (12)
Qe 0 P/{at)® 0 0 1 0 -Pa, Qe
N 0 0 0 0 0 0 PGl N,
v )y Le o o o o o v L),
e (“n)% 1Ay L 1 32 -
Mooz T o ). (e 1)0—;;:)1
L X .
2 = iuzi} * o (’—f&)1 + (2‘—3-1><a:—t}: (13)
(w )t sw_ L 3w L

NUMERICAL RESULTS

Since no solution, analytical or numerical, is available for trans-
jent response of bimodular beams, the present transfer-matrix model could
be checked only by comparison with results obtained for an ordinary-
material beam. The comparison is made with a modal solution presented
in Ref. 9. The material properties and dimensions of the beam are listed
in Table I and the loading and boundary conditions are those of Case )
in Table II. The tip-deflection response for 1-millisec time increments
is shown in Figure 1. As can be seen, the agreement is close, thus

serving as a benchmark validating the accuracy of the present transfer-

matrix model as applied to transient analysis of beams.

%
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The material and beam geometry selected for the bimodular problems
investigated here were the same as those used in Ref. 2; see Table III.
It is noted that this material is highly bimodular in nature, since

Et/Ec = 300.

Transient response of a clamped-clamped bimodular beam with axial
constraint is investigated for loadings having different time functions
and different spatial distributions. Load which is a step in time is
investigated in Case 2 for uniform spatial distribution and in Case 3 for
cosinusoidal spatial distribution. Load which is a ramp function in
time is investigated in Cases 4 and 5 for uniform and cosinusoidal dis-
tribution. Maximum-deflection response with time for the above mentioned
cases are illustrated in Figures 2 through 7. In all of these cases,
oscillation keeps continuing without reducing amplitude, since the model
developed in this study does not incorporate structural damping. However,
the present model is still of value to designers since the predicted

results are on the conservative side.

CONCLUDING REMARKS
In this study, a transfer-matrix model, based on Timoshenko-beam
theory, was developed for a bimodular beam and applied to transient
response problems. Since no transient response analyses of this type of
beam by other methods of solution are presently available, it was not
possible to make comparisons. However, for the case of a beam of ordinary

material subjected to a triangular pulse, results obtained by the oresent

method agreed well with those obtained by the modal method.

e g WA~
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APPENDIX A: COMPUTATION OF BEAM STIFFNESSES FOR A BIMODULAR BEAM
The beam cross section is assumed to be compact and rectangular,

extending from z = -h/2 to z = h/2. Since E(k) depends upon the sign of
the axial strain, beam stiffnesses A, B, and D depend upon the neutral-
surface position z, thus the first three of equations (4) must be
integrated piecewise. For example, for concave upward bending
(32w/3x2 < Q) the top portion of the cross section (from -h/2 to zn) is
in. compression and the bottom portion (from z, to h/2) is in tension.

Thus, the first of equations (4) becomes

Z, h/2
A= [ EC dz + f et 4z = [z, + (h/2) €€ + [(h/2) - zn]Et
-h/2 z,
or
A= (h/2)(E" + €9 -z (E%- %)

In similar fashion

w
]

[(h%/8) - (z,2/2)(E" - E9)
(h*/28)(EF+£%) - (2, %/3)(E" - €°)

O
1}

In the case of convex upward bending (32w/3x<¢ > Q), the results are:

A = (h/2)(Eb+EC) + zn(Et- £%)
8 = -[(h%/8) - (z,%/2)1(E"-E°)
D = (h*24)(EP+E%) + (z,%/3)(E"- €%
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FIELD MATRIX FOR A THICK BEAM OF BIMODULAR MATERIAL

The following matrix equation was derived in Ref. 2:

(u\L R
W 0
1] 0

> =10

0 0 Baz B(a2)? =Daz Bagy
Y 2y Y 2y 'm
1A ASR)® e, A(a2)dy -B(an)? -A(ar)2 sk
2y S 4y 2y 4y "m 2S7q
0 1 A -A(a2)2 Baz Adz
Y 2y Y 2y 'm
0 o | AL 0 -K
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e TM. SOLUTION
0.20 } —— MODAL SOLUTION |

0.15 F

0.10

0.05

at ==£ 0
(in- )-o.os
-0.10

-0.1%

-0.20

3 1 A, I A 4 s

2 4 6 8 10 12 14 16 18 20

tx10 3(sec)

Figure 1. Comparison between transfer-matrix and modal solutions
for a beam made of ordinary material and subjected to
transient load {(Case 1). Note: 1 in. = 2.54 cm,

IV FOrI
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Table I. Material properties and beam dimensions 4
for ordinary-material check problem g
Value y
Property or Dimension ST units English units

Material Properties:

Young's modulus 207 GPa 30 x 108 psi

Shear modulus 79.6 GPa 11.5 x 10° psi

Specific gravity 8.20 8.20
Beam Dimensions:

Length 183 «c¢m 72.0 in.

Depth 58.7 cm 23.1 in.

Table II. Boundary conditions and spatial and temporal
variations in loading considered
q =4 tQO E
Qift7 I
4 [ L] | i : i
/] x 3 2. A 2 ¥ - ! |
/ i —>, »
X=0 Xz t: th S |
CLAMPED-FREE UNIFORMLY DISTRIBUTED |TRIANGULAR PULSE
q=4a9
0 qu
— ‘ Lo
% 3 q
/777777777777744 - L l '411 i 21

X=Q X=g
CLAMPED-CLAMPED WITH| UNIFORMLY DISTRIBUTED | STZP FUNCTICN
AXIAL CONSTRAINT

q = g, cosax | aqo
qu

» i
—
TTITTITT T w

NOANAY N
AN\
</
5\

CLAMPED-CLAMPED WITH| COSINUSOIDAL (2=2x/1) STEP FUNCTICN
AXTAL QONSTRAINT ? !
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Table II. (continued)

Case | Boundary conditions | Spatial distribution Time Yariation of
No. - of distributed load distributed lcad
v 9= % do
| . 7 2 do ['7
: TIIIT I { i
E X=0 X=g t3 t
i CLAMPED-CLAMPED WITH| UNIFORMLY DISTRIBUTED |
AXIAL CONSTRAINT
q = g, Cosax Jo
7 4 NI\ /ﬂ ]
A ; 217
!
5 rr/r/I/r/T/ \Lij/ . : g
X=0 X=1 te t
CLAMPED-CLAMPED WITH | COSINUSOIDAL (a=27/2)
AXIAL CONSTRAINT
/ 4 ' q = Clo ‘P qo
/ 4 d2 :
77777777777 r J _ \1
6 X=0 x=2 t5 t ‘i
CLAMPED-CLAMPED WITH | UNIFORMLY DISTRIBUTED
AXIAL RESTRAINT RECTANGULAR PULSE X
1
g = g, cOsax 440
y ‘
7 AN 1 |9
/ !
7 TTTTTTTI7777 4 \Llj/ » f
X=0 X=2 te t
CLAMPED-CLAMPED WITH| COSINUSOIDAL (a=2w/2)| RECTANGULAR PULSE
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Table III. Material properties and beam dimensions
for aramid-cord rubber beam

Value f
Property or Dimension SI units English units
Material Properties: i
i
Longitudinal Young's modulus 3.58 GPa 519,300 psi ‘
in tension .
Longitudinal Young's modulus 12.0 MPa 1,740 psi
in compression Y
Longitudinal-thickness shear 3.70 MPa 537 psi t
modulus (independent of J
tension or compression)
Specific gravity 1.02 1.02
Beam Dimensions:
Length 20.3 cm 8.00 in.

Depth 1.52 cm 0.60 in. i
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